HOLOOR A VISION OF EXCELLENCE

Multi Focal Lens

Multi-focal Diffractive Optical Elements (DOE's) allow a single incident beam to focus simultaneously at several focal lengths along the propagation axis.

From a collimated input beam (single mode or multimode), the output beams focus at a fixed number of focal lengths, predetermined during the design of the DOE based on the customer's system requirements.

FEATURES

Arbitrary number of foci Control in the distance between foci High power threshold

Z Axis

APPLICATIONS

Ophthalmic application Optical sensors Parallel zoom systems Material processing (Laser cutting)

Multi-focal DOE come in two configurations:

- 1. A DOE consisting of a Plano convex lens with predetermined focal length, and a diffractive pattern, etched on its Plano side.
- For more flexibility, a window DOE, thus, to get the foci spots at certain distances, the user adds a regular focusing lens after the DOE. The lens focal length determines the working distance (WD).

Tel +972-8-940-9687 Fax +972-8-940-9606 www.holoor.com holoor@holoor.co.il

Einstein 13B, Science Park Ness Tziona 7403617

HOLOOR A VISION OF EXCELLENCE

THEORY & DESIGN CONSIDERATIONS

The multi-focal spots location is a function of the refractive focal length, $f_{Refractive}$, and predetermined diffractive focal length, $f_{Diffractive}$. The foci spot at the "zero" order refers to the refractive FL of the used lens. The other diffractive foci spots, orders +/-1,2,3..., appear symmetrically around the refractive "zero" order. The distances between the foci spots are described by the equation below: $\times 10^{6}$ Central spot energy

$$\frac{1}{f_{"m"Diffractive}} = \frac{1}{f_{\text{Refractive}}} + \frac{1 \cdot m}{f_{\text{Diffractive}}} \quad m = \pm 1, \pm 2, \pm 3...$$

Where:

 $f_{"m"Diffractive}$: FL for "m" diffractive order ; $f_{Refractive}$: FL of a refractive lens ; m : order of multi-focal spot The Multi-focal spots location can also be calculated by using **HOLO/OR**'s online optical calculator: <u>https://www.holoor.co.il/optical-calculator/multifocal-lenses/</u>

In the case of a multi-focal DOE with an even number of foci spots, the removal of the Zero-Order spot is achieved by special design and processing.

For binary designs (2 levels pattern structure), power efficiency varies between 75% (for Bifocal and multi-focal) to 85% (Tri focal).

Each focal spot contains a fraction of the input beam power. In example, for a tri-focal DOE (~85% efficiency), first focal spot will have ~28% of the input beam power at precise diffractive FL, "+1" order. Forward on the propagation axis a focus will appear at the nominal FL of the lens. Here the focus spot will have ~28% of the input beam power. The last focus appears at the "-1" order (diffractive order) and will have the same power. At each order the rest of the power (~56%) will be spread around the focus in the form of a halo.

Multi-focal can also be used as quasi-elongated focus elements, effectively creating a larger depth of focus in material processing operations.

Materials	Fused Silica, ZnSe, Plastic
Wavelength range	193nm to 10.6um
Number of Foci	Custom specific (2-11)
Doe design	Binary, 8-level, 16-level
Diffraction efficiency	75%-98%
Element size	5mm to 38.1mm
Coating (optional)	AR/AR
Custom design	Tailored power distribution, Foci spacing
Tel +972-8-940-9687 www.holoor.com Fax +972-8-940-9606 holoor@holoor.co.il	

SPECIFICATIONS RANGE

Einstein 13B, Science Park Ness Tziona 7403617

Tel +972-8-940-9687 Fax +972-8-940-9606 www.holoor.com holoor@holoor.co.il

Einstein 13B, Science Park Ness Tziona 7403617